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We investigate geometric convergence for rules of numerical integration and the
associated Lagrangian interpolation polynomials over unbounded contours and
intervals. The results obtained are shown to be substantially best possible.

. MOTIVATION

Little is known about convergence rates of Lagrangian interpolation and
numerical integration over unbounded intervals. Here elementary methods
are used to investigate geometric convergence of not necessarily real rules of
numerical integration and the associated Lagrangian interpolation
polynomials. We show our results are substantially best possible. Further, in
showing that our results contain some recent results of Aljarrah |1]. we
remove a restriction in his class of weights.

2. NOTATION

(i) Throughout, (a,b) will be a fixed unbounded real interval
(—oo €a <b< o0)and f: (a, b) - C (the complex plane) will be continuous.
Further, a: (a, b) = C will be a fixed function of bounded variation such that
the moment function

-h
m() = | BN d el (x) (2.1)

cxists and is finite for all 1> 0, as a Lebesgue—Stieltjes integral. Here
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CONVERGENCE ON UNBOUNDED INTERVALS 339

d|a| (x) denotes the total variation of da(x). To exclude “trivial” cases, we
shall assume supp|d|a|] is infinite. Define also the moments

m; = |’b Bxy da(x),  j=0.1,2... (2.2)

Whenever the Lebesgue—Stieltjes integral is defined and finite, define

/@1 =11/ 1= | FB) dax) 2.3)

The most important case of the above is where ff(x) = x, and a(x) is real
and monotone increasing, with supp|da| unbounded. However. the above
also includes complex integrals over unbounded contours.

(i) Whenever p > 0 and the Lebesgue-Stieltjes integral is defined and
finite, define

b Ly
I glle.,= 3_‘ | g(Bx))" d || (-ﬂ(
Also, whenever r > 0 and the sup is finite, set

I gll,., =supi| g(z): |z} < 7.

(iit) 7|f] will be approximated by

N A S, on=1020 (2.4)
|

k

Inlf] =

where the abscissas x x,, are n distinct complex numbers and the

Aa1 " an

weights 4,, -+ 4,, are complex numbers. Let

A(x) = max : Nl gngxf allreal x > | (2.5)

— g

>

and

A =lim sup A(n)"". (2.6)

Of course A =1 for rules with positive real weights, but 4 =2 for
Newton—Cotes rules on [—1, 1]. See [11, p. 274]. Let

8,(z)= H (z —x,), n=12,.. (2.7)

i=

640/39/4 4
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= ”5;1”0,2" n=12.. (28)
6,(z)=7y,6,(2), n=1.2... (2.9)

In the special case where f(x)=x, and «(x) is real and monotone
increasing, with supp|da| unbounded. and where the |x,;} are the Gauss—
Jacobi abscissas for da, then {¢,} is the sequence of orthonormal
polynomials for da. and {y,} is the sequence of leading coefficients.

(iv) We assume that we are given a function 4(n) bounding /,’s
abscissa of largest modulus. More precisely. assume

4: |1, c0)— (0, 00) is monotone increasing |

and lim 4(x) = o0 \ (2.10)
and
maxi|x,,|: | <k < nf < A(n). n=1.2... (2.11)
For all s > 0. let
w(s)= lir{l'srup A(xs)/4(x) (2.12)
x(s) = lim sup Ay + 5)/4(x). (2.13)

We shall usually assume that y(s) is finite for all s > 1. This allows A(x) to
grow smoothly like x"” or ™ some # > 0.

(v) We shall assume /, is exact for some powers of z. that is.
125 =124 | = m,. k=0.1.2.r(n). n=12... (2.14)

Regarding {x(n)}, we assume throughout that {«(x)} is positive. monotone
increasing and lim, ,, k(n)= oo. We shall often assume that for some fixed
real (>, u>0,

K(n)zn—u all large enough n (2.15A)
and/or

Kk(n)y<n+u all large enough n. (2.15B)
Let O(v) be the “lower inverse™ of x(n), that is.
O(x) = min{n: k(n) > x| all real x > k(1) (2.16)
so that #(x) is monotone increasing, integer valued and

K(O(x) — 1) < x < k(B(x))  all x> k(1). (2.17)
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Hence we have also

(2.15A)= 0(x) < (x + u)/+ 1 all large enough x  (2.18A)
(2.15B) = 8(x) > (x —u)/¢ all large enough x.  (2.18B)

For general interpolatory quadrature rules, x(n)=n—1; 8(x)= least
integer > x + 1; {=u = 1. Further, for Gauss—Jacobi rules x(n)=2n - 1:
f(x) = least integer > (x + 1)/2; {=2: u = 1. Note, however, that we did not
require § to be an integer in (2.15A, B).

(vi) Given real p >0, we shall write throughout p* = max{l, p/{},
without further mention. Here { is the number in (2.15A, B). Define

ui(p)=limsup |16, /4(p*n) (
o (2.19)
w(p)=1im inf 4,1/5/a(p*m) |

v=limsup [(I — 1)z || <D A(n). (2.20)

The quantities 4, (p), #_(p) and v depend only on the rules {/,} and are
important in discussing geometric convergence.

(vii) The Lagrangian interpolation polynomial of order n (n =1, 2....)
to a function f(z) defined at x_,, i=1,2,.., 1 is

nis

LAFIE) = N Py o)
where
lnk(z) = I,I {(Z - xnj)/(xnk - xnj)}’ k=1, 2*"'? n.

.7, will denote the class of polynomials of degree at most n with complex
coefficients.

(viii) For any entire function f(z) = Y%, b, 2/, its order is
J—0 %
p(f) = lim sup (n log n)/(log |b,| ") (2.21)

and if 0 <p(f) < oo, its type is

t(f) =1im sup b,/ (ep(f)). (2.22)
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Finally, we introduce the A-index of f, denoted o(f: s), by
o(fis)=Ilimsup|b,|'"" A(sn) alls > 0. (2.23)
For suitable values of s, o(/f; s) determines whether or not /| /| converges

geometrically to 7| f]; and whether or not L,| /| converges geometrically to /
in some sense.

3. LEMMAS

In this section, we establish some preliminary results. The following
lemma compares p. 7 and o.

LEMMA 3.1, Ler f(z) =)/ b,z be entire.
(a) Suppose for some g, >0, ¢, > 0.
A(x) < (e, x)" all large enough x. (3.1)
Then

(i) p(f)<1/g,=0a(fi5)=0alls>0.
(i) p(f)=1/g,= a([f:5) < (c.set(S)/q,)" all s > 0.

(b) Suppose for some q, > 0. ¢, > 0,
A(x) = (¢, x)" all large enough x.
Then

(i) p(f)> /g, = o(fis)=oc0alls>0.
(i) p(f)=1/g,=o(fis) = (c,set([)/q,) alls > 0.

Proof.  (a)(i) It follows from (2.21) that for some g > ¢, and for large
no b, i< n ", so (3.1) gives

|b, """ A(sn) < (c,8) n? 450 as - 0.
(ii) Writing p =p(f) = 1/g,. we have
|b, 1" A(sn) < (816,17 n):
and (2.22), (2.23) give the result by taking lim sup’s.
(b) is similar. Q.E.D.

One can introduce a “lower A-index” ¢ (f;s) by replacing the lim sup in
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(2.23) by liminf. This is useful in some counterexamples, but we omit the
details.

LEMMA 3.2, Let w(s) and yx(s) be given by (2.12) and (2.13), respec-
tively.

@) y(rs) Sy(ryw(s) x(r+s)<x(r) x(s) all r.s > 0.
(b) If for some r> 1, y(r) < oo, then w(s) is finite for all s> 0.
Further, given ¢ > 0, and if

q, = (log(w(r) + ¢))/log r (3.2)
then for all large enough x,
A(x) < (e %)

where c, is a positive constant.

(c) If for some r <1, y(r) <1, then lim__,, w(s)=_0. Further, given
small € >0, and if

q,= (log(w~'(r) —¢))/log r
then for all large enough x.
A(x) 2 (¢, x)"
where ¢, is a positive constant.

Proof. (a) follows directly from (2.12) and (2.13). Note that we have
to interpret 0 - 00 = oo if w(r)=0, w(s)= co.

(b) From (a), w(r) < (w(r)Y all j=1,2.. so w(s) is finite for all
s > 0. Next, for some positive integer /, we have

A(rx)/4(x) < w(r) + ¢ all x > r, (3.3)
Then given x > r, we have for some integer j >0,
P x < s I+ j— 1 logxflog r < 1+
so that by (3.3),
A(x) A" <A(r)(w(r) + ey
<A w(r) + e)orv/own 1
= (c,x)%2

where ¢, is given by (3.2) and ¢, is a constant independent of x.
(c) is similar to (b). Q.E.D.
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Lemma 3.3. (a) |I|2/)|<A(n) A (n).j,n=0,1,2,..
(b) 2/ || <AB()) 4(0()).j=0. 1. 2.....
(c) When f(x), a(x) are real valued functions and da(x) > 0 in (a, b),
then

m(t) < 24(6(t + 2)) A0 +2))  allt>0.

Proof. (a) follows from (2.5) and (2.11).
~(b) From (2.14), (2.17) we ‘have «(0(j))>/ and hence
I[z'| =142’ |. Now apply (a).
(c) Given r>0, let j be the least even integer >t. Let K be an
arbitrary positive number. Then if .»* = {x:]|f(x) < K},

m(o)= [ B0 dat)

<K'[ da()+| BN (BEIKY ! dalx)

(N7
< K'my+ K'"'m;,

as f(x) is real and j is even. Choose K = A(6(t + 2)) and use the bound in
(b) together with monotonicity of A(x), 4(x), 8(x) and j < t + 2. Q.E.D.

LEmMMA 3.4. Letj>n>1and P(z)=2'—L,|z'|(z). Let 0 <d < | and
h(d) = 26/(1 —9).
@) &) <Py <H"'(O)A(R)/SY/(20).
(b) When j=n, P(z)=6,(2).
(¢} When f(x), a(x) are real valued functions and da(x) > 0 in (a. b),
then for p > 1,

[Plq, <H"HS) AV (8Uip + 2))A(1)/0Y (2/9)

where | = max{n, 8(jp + 2)}.

Proof. (a) The left part of the inequality follows from the well-known
fact that for any monic polynomial Q(z) of degree
max{|Q(z)[: |z| < r} > r'—see, for example, Hille |9, p.267|. The upper
bound follows by using

dt

P(z)=2 —L,|2/|(z) = ni)"" l( (z i z) %

all |z]| < d(n), where C={t:|t|=A(n)/d}~—see Davis |3, Theorem 3.6.1.
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p. 68|. Since the zeroes of ¢, lie in |z| < 4(n), estimating the contour integral
in the usual way yields the right part of the inequality.

(b) Both P(z)=z"—L, [z"|(z) and §,(z) have leading coefficient 1.
degree n, and the n zeroes x,,, k=1, 2,..., n, in common, so must be iden-
tical.

() Let r>0 and .7 ={x€(a,b):|f(x)|<r} Then for x&€./,
[ P(BC0) <P, » and for x € (a, D)\.7, [P(BOx))| <[P, [B(x)/rl by the
Walsh—Bernstein inequality |10, p. 77]. Thus

1PIIG., < | 12117, da(x) +J 1PU7.. [ BE)/rl dax)

(a,b)\.7

SNPIE. o (my + m(jp)/r™).
Taking r = A4(n) and using Lemma 3.3(c), we see

mq + m(jip)/r? < A(B(0)) + 24(6(jp + 2)) 47 (B(jp + 2))/4" (n)
< 3A4(60p + D)NAD/A(n)y?

by definition of /. If we now use the upper bound on || P|,,, .. in (a) above,
and take pth roots, the result follows. Q.E.D.

Lemmas 3.4(a), (b) remain true when some of the abscissas x,, coalesce.
Lemma 3.4(c) remains true with a suitably modified definition of A(n).

LEMMA 3.5. Let f(z) =372, b,z be entire. Assume A given by (2.6) is

finite and x(s) given by (2.13) is finite for s > 0. Set h(x)=2x/(1 —x) all
0 < x < 1. Assume that (2.15A) holds.

(a) Let cg=x(u/¢ + 1) A" If 0(f: 1/) < 1/, then

lim sup [(/ = 1)L/ |I'"" < (eo0 (/5 1/0)F < 1.

(b) Ifa(fi1) < 1/3, then

fim sup £ =L, |/ 13600 < BO(S 1) < 1.

(c) Assume B(x), a(x) are real valued functions and da(x) >0 in
(a,b). Let p>1 and ¢, = x((u + 2)/{ + 1) A" If o(fi p*) < 1/(3c,) then

tim sup [|.f— L,/ ll27 < (e, o(£ip7)) < 1.
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Proof. (a) Using (2.14), we have (at first formally)

%

Jowin) 1

Now j > k(n)= 6(j) > n by (2.17). Further, (2.18A) holds. These remarks
together with Lemmas 3.3(a), (b) and monotonicity of A(x). 4(x) give, for
all j > x(n),

(1= T2 ]| <240 + w)/C+ DA+ u)/C+ 1)

Then

lim sup { ax Vb, — 1)
j>nlny

noso i

< lim sup {,-Ta();) A+ w4+ DA+ w)/E+ 1/A3/0)]

X i1 A/
<A W+ D o(f1/0) = egol £ 1/0)

by (2.6), (2.13) and (2.23). Then given small ¢ > 0, (2.15A) and (3.4) give,
for large enough n,

o

=Dl Y (I +e)epo(fi1/0)

Jodn-uil

SK((1+e)eyo(f 1)

where K is a constant independent of n. The result follows.
(b) We have

e

(f= LS D) =X bz’ = L,|'|(2)) (3.5)

Poon

Choose ¢ > 0 such that d =o(/f: 1)+ ¢ and 0 =a(f; 1) + 2¢ are less than 1.
Then by Lemma 3.4(a), for large n,

1= Lol Maom.e SA"THO)20) 1 X (b1 (A(n)/3Y

<h)28) N (@)oY

by (2.23) and monotonicity of 4(x). The result follows as é and d < d can be
chosen arbitrarily close to o(f; 1).
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(c) Choose ¢ so small that d =c,0(f; p*) + ¢ and é = ¢, o(f; p*) + 2¢
are smaller than 1. Then using the upper bound in (2.18A), as well as
Lemma 3.4(c), and (3.5), we obtain (at first formally)

1S Ly f sy <207 1@) 6N AP ((p 42 + )L+ 1)]by]

Jon

X (4(jp* + 2 +u)/L+ 1)/5Y

<O K N ()oY

J=n

for large n by choice of ¢, and d, and where K is a constant independent of
n. The result follows. Q.E.D.

LEMMA 3.6. Ler f(z)=31",b;z’ be entire with b; real, j=0,1,2,.
Let n be a given positive integer and x,;, j=1,2,..., n, be real.

@) | S= LIS () <18, X7, () 1b,] (max{| x|, ()Y ", for all
real x.

~(b) If b,;20, by, =0, j=0,1,2,... then | f—L,, |/ (x)>
by, |92,(x)| for all real x.

(©) If by=0, by, >0, j=0.12u then |[—Ly,, |/ (x)>
b2n+l |¢2n+l(x)’f0r all real'x

d) If x,,j>9, Jj=1L2u,n and b;>0. j=0,1,2,.. then
|f=L,[f(x)>b,18,(x) for all x>0.

Proof. By the well-known error formula for Lagrange interpolation
(Davis |3, Theorem 3.1.1, p. 56]) for all real x,

(f= L /D) =" () 6x)/n!
=g N (j)b_,-r;f*". (3.6)
P n

=

Here # depends on x and is contained in the smallest interval containing x,,,.
k=1,2,..,n, and x.

(a) follows from (3.6) and |n| < max{d(n),|x|}.
(b) Using (3.6) and the restrictions on {b,},

- A
= Ll AT =16060 X () ) o2

> 1624(%) bzn-
(c), (d) are similar to (b). Q.E.D.
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LEMMA 3.7, Assume that f(x)=x and that a(x) is real and absolutely
continuous in (a, b). Assume that da(x) > 0 in (a, b). Further, assume there
exists § € (0, 1) satisfying

lim inf meas{x € (a, b): ¢'(x) > 8" {/4(n) > 0 (3.7)

n— o0

where meas denotes linear Lebesgue measure. Then u_(p) given by (2.19) is
positive for all p > 0.

Proof. Let p>0. Let .7 (n)={xE (a,b):a’(x) 26"} all n= L, 2,...
For large n, there is an integer between p*n and 2p*n, so monotonicity of
d(x) and (3.7) yield

meas(. 7 (n)) = cd(p*n) all large enough n (3.8)

where ¢ >0 is independent of # Choose 0<e<c¢/(4e) and let
Z(n) = {x:|6,(x)| < (ed(p*n))"}, n=1,2.... By Cartan’s Lemma (Baker
[2, p. 174])

meas(¥ (n)) < decd(p*n), n=1.2... 3.9)

Then by absolute continuity of a(x).
-~ .[) ~
1610 = [ 18,000 a'(x) ax

> (A (p*n))™ 5% dx

Yo\ ()

> A" (p*n)(e"o™ )" (¢ — dee) A(p*n))
by (3.8), (3.9). The result follows as ¢ — 4ee > 0. Q.E.D.

LEMMA 3.8. Assume that f(x)=x and that a(x) is real and da(x) > 0 in
(a, b), with supp|da| unbounded. Assume that the {4} and {x,,} are, respec-
tively, the Gauss—Jacobi weights and abscissas for da(x).

(a) Let f(z)=73"7 ybyz% be entire with b,; > 0.j=0.1,2..... Then

I f] <o N bym,y, < oo (3.10)

Y
and if either of these holds,
U= INf1 = by, allnz1 (3.11)

(b) Ifvis given by (2.20), then v =u , (2).
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(c) Ifg(z) is defined at x,;, j=1,2,..., n, then

Lol @lsime <70 s QAN il max fglo,) (312)

Proof.  (a) Since the partial sums of f increase monotonically to f in
(—00, 00), (3.10) follows from Lebesgue’s monotone convergence theorem.
To show (3.11), note first that (I —1,){x*] >0 all j=0, 1, 2,... by Shohat’s
Lemma (Freud [8, Lemma III.1.5, p. 92]) and hence

U= L)) = N byl — 1)

ion

2 b2n(1 - [”)lxbz l

Next, let H(x) be the (Hermite) interpolation polynomial of degree at most
2n — 1 that interpolates to the value and first derivative of x*" at x = x

- 5 "n/"
j=1,2,..,n Then the polynomials z*" — H(z) and (§,z))" have leading
coefficient one, and 2n zeroes in common, so must be identical. Thus by
exactness of the quadrature rule and by (2.8),

(17 In)lxznl = ]lenl - In[H]
=1|x*"| —I1|H|
=161 =7," (3.13)
(b) As «x(n)=2n— 1 for Gauss—Jacobi rules, (2.20) yields
v=lim sup |(£ — 1,)|x*"]|/*" /A (n)
=lim sup |4, |12/4(n) =4, (2)
by (3.13), (2.8) and as 2* = max/{l, 2/{} = 1 for Gauss—Jacobi rules, since
{=21in (2.15A).
(c) By Eq.II1.(6.3) in Freud |8, p. 114],

lnk(z) = (ynf l/yn) /lnk¢nf I(xnk) ¢”(Z)/(Z - xnk)’ k= 1’ 2‘ n.

(His notation is a little different from that here.) Then if [/, acts on the
variable y, we see from (2.9) that

Lnl g](z) = ))nf—lan(z) [nl,én—l(.v)g(y)/(z _.V)I'
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Using Holder’s inequality and 7,|¢. ,(»)}| =1|¢._,|= 1. we obtain
iy

HLHI g]“A(n).;(, < })n,, 1 113?3,, “¢~n(z)/(2 - xnk)HA(n).fx 1:1 2II g

and (3.12) follows. Q.E.D.

When (a, b) < (0, c0) an obvious analogue of Lemma 3.8(a) holds for
entire f(z) =3, b;z/ with >0, /=0, 1,2,...

4. GENERAL THEOREMS
Following is our main result.
THEOREM 4.1. Assume A given by (2.6) is finite and that y(s) given by

(2.13) is finite for all s>0. Write h(x)=2x/(1 —x) for all 0 < x <1,
Assume (2.15A) holds.

(a) Let c,=x(u/{+1)AYE For any entire function [ such that
a(f3 1/8) < 1/c, , we have

lim sup (1 — 1)1/ 11" < (euo(f: 1O (4.1)

(b) For any entire function [ such that o(fi 1) < 1/3, we have

lim sup L/ L, [ /1156, < A(0( 1) (4.2)

(c) Assume B(x), a(x) are real valued functions and da(x)>0 in
(a.b). Let p>1 and c,=y((u +2)/+ 1)AY:. For any entire function f
such that o(f; p*) < 1/(3¢,), we have

lim sup ||/~ L, |/ 11, < hic,0(f: p*)). (4.3)

In addition, let (2.15B) hold. We then have the following negative assertions
to complement the above:

(a'") There exists an entire function f(z) with a(f: 1/{) an arbitrary
number in (0, 1/c,) and

lim sup (1 — £,/ > ol 1/0)x( + DO (4.4)

where v is given by (2.20).
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(b") There exists an entire function f(z) with o(f, 1) an arbitrary
number in (0, 1/3) and

lim sup (I — L,/ 156Gy > 002 1) (4.5)

(¢") Let p> 1. There exists an entire function [(z) with o(f,p*) an
arbitrary number in (0, 1/(3c,)) and

lim sup | /= L,[/1l7 2 4. (p) a(f: p*). (4.6)

Proof. The positive assertions (4.1), (4.2), (4.3) follow immediately from
Lemma 3.5. We need prove only the counterexamples by choosing suitable
entire functions f(z) =37 b,z’.

(a’) Assume v >0, otherwise the counterexample is trivial. Let
o€ (0, 1/cy). By (2.20), we can choose positive integers n(/) with the
following property. Let k(i) = «(n(i)) + 1. i =1, 2,.... Then, for i =1, 2,....

k(i + 1) > (i + 1) k() (4.7)
n=n()  k=k(@) =112 > [0~ 1/D)y am)]" (4.8)
Let £ = {k(i):i=1,2...}. Set b, =0 if k& # and
byA*(k/C) = o* if ker. (4.9)
Then f(z) = Y%, b;z’ is entire and clearly o(/: 1/{) = 0. Further. if n = n(i).
k = k(i), (3 4), (4.8) and (4.9) give

1S = b1 1)1

N\
jeE >k
> [0 =1/ AAKON = L 150 = 1))l (4.10)

Now if k = k(i), n=n(i), then k <{n+u+ 1 by (2.15B), so
lim sup A(k/0)/A4(n) < lim sup A + (u + 1/0)/A() = x((u + 1)/ (&.11)

Choose small ¢ > 0. Proceeding as in the proof of Lemma 3.5(a), and using
(4.7), (2.15A), we see that for large i, n = n(i), k = k(i),

N b U = I S K((1 + &) coo(f 1/0)" (4.12)
JEF j>k

where K is a constant independent of n,i. Then (4.4) follows from (4.10),
(4.11), (4.12) by letting i » oo and n = n(i), kK = k(i).
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(b’) Here one uses (3.5) and ||z"—L,[z"|ll4on.o 24"(n) (by
Lemma 3.4(a)) and chooses the {b;} much as in (a).

(c") From (3.5), it follows that

bn‘ HZ’I - L”[Z” |Hn.p - }_‘ ‘b/‘ HZ/ - Lnlsz
iontl

Hf4 Ln'f”ln.p :>/

[ 3Y2)
provided the norms and series are finite. Further, by Lemma 3.4(b),

bulllz" = Lyl o= 116, A0, /A ) 1

Using these equations, and (2.19). (2.23). one can choose the {b;} much as in
(a’) to deduce (4.6). Q.E.D.

Remarks. (a) Theorems4.1(b), (c) remain valid when some abscissas
|x,;} coalesce, so that L, [ f| interpolates to some derivatives of . When they
are interpolatory, the integration rules may also be modified to use [7s
derivatives: in studying convergence one then wuses the inequality

|(141n)lf|1 < ‘|f7Lrllf|“(w|

(b) Obviously the counterexamples in Theorems 4.1(a’), (c’) have no
significance unless v > 0. u, (p) > 0, respectively. It is possible to construct
rules for which both these quantities are zero-—in such cases it is perhaps
inappropriate to base a study of geometric convergence on the function A(n).
However, in practical rules. both v and g (p). and so u, (p). are
positive—see Section 5.

(c) The negative assertions show that in each case, the term involving
o(f; -) substantially determines the rate of convergence. For example. (a).
(a') yield functions satisfying

Ky < limsup (1 — L)1/ )"0z 1/0) < K.

where K, and K, depend only on the integration rules, not on f, and where
K, is usually positive.
COROLLARY 4.2.  Assume that A, x(s) are as in Theorem 4.1.

(a) Assume that for some q > 0, ¢, > 0,
A(n) < (c,n)? JSor all large enough n. (4.13)

If fis entire and p(f) < l/q, then we may replace the right members of (4.1),
(4.2) and (4.3) by 0. If p(f) = 1/q then we may replace o(f.s) in (4.1). (4.2)
and (4.3) by (c,set(f)/q)? with the appropriate values of s, provided s is
small enough to satisfy the requirements of those assertions.
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(b) Assume, in addition to (4.13), that for some ¢, > 0,
A(n) = (cyn)?  for all large enough n.

Then there exist entire functions f with p(f)=1/q and satisfying the
restrictions on o(f; s) in (4.4), (4.5) and (4.6), with the appropriate values of
s. Further, for those entire functions, we may replace o(f,s) in (4.4), (4.5)
and (4.6) by (cyset(f)/q) with the appropriate values of's.

Proof. This follows immediately from Lemma 3.1 and Theorem 4.1.
Q.E.D.

Remarks. (a) When w(r)< oo, some r>1, and >0 is given,
Lemma 3.2(b) shows we may choose g = inf{log(w(r) +¢)/logr: ¥ > 1} in
(4.13).

(b) When the abscissas {x,,} are real, there is the following alternative
result for Lagrangian interpoiation.

THEOREM 4.3, Assume that f(x), a(x) are real valued and da(x) > 0 in
(a, b). Assume that x,;, i=1,2...n;, n=1,2... are all real. Assume that A
given by (2.6) is finite, and that (2.15A) holds.

(a) Let q,2p,>p>1and p,"'+q; ' =p~". Then if { is an entire
Junction such that o(f,qF) <A %, we have

lim sup || £ = L,|F 11V <a. (p) 0/ a3)/(1 = A 0 (f: 47D,

(b) By contrast, if [f(z)=37 byz¥ is entire with b, >0,
J=0,1.2... then for p>1 such that || [, , < . we have

Proof. (a) Assume first f(z)=3 7 b;z/ is real for real :.
Lemma 3.6(a) and Hdélder's and Minkowski’s inequalities give (ar first
Sformally)

o8

1= Lol M L, X () 1B sk aGopy ), (414)

Here by Minkowski’s inequality and (2.1),
[(max {{xi, 4(m)}Y ",
Kl g, + 147" ) 4,
=m (= n)g,) + m N (0) 4 "(n)
<A240[( —n) q, + 2D} HA 701 —n) g, + 2]) + 477 "(n)}
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(by Lemma 3.3(c) and monotonicity of 1)

LKAV AT igF) allj > n, all n large enough. (4.15)
Here K is a constant independent of n, and j, and we have used (2.6),

(2.18A), the monotonicity of 4, and the definition of g*. Now let € > 0 be so
small that

d=A"e(fig¥)+e< 1. (4.16)
Using ¢ > pf and (4.14), (4.15), we obtain, for large n.
17— Lol S Ny S KA 7808 /2700 N () 18,4 21
Jon
1/¢ BNV \l‘ -/ i
SKA " (p)+e) S d

—K(A Y, (p)+ e d"(1 —d) " . (4.17)

The result follows from (4.16) and (4.17) by taking nth roots and letting
n— oo. When fis non-real for real z, write /(z) = f,(z) + if5(z), where /). [,
are entire and real for real z. Further, use the linearity of L, as well as
o(fiis)<a(fis),j=12;520.

{b) By Lemma 3.6(b).

"’n‘ o ")/A(zp /’l)}

1S = Lol SIS 2 102" A@2pFm)H]

and the result follows from (2.19), (2.23). Q.E.D.

Theorem 4.1(c) and Theorem 4.3(a) complement one another—neither
contains the other in general.

5. Gauss—JAacoBl RULES

Throughout this section—without further mention—we assume f(x) = x
and that a(x) is real and monotone increasing in (a, b) and that supp|da] is
unbounded. Further, we assume that the {1,;} and {x,;} are, respectively, the
Gauss—Jacobi weights and abscissas for da(x). Thus {¢,} given by (2.9) is
the sequence of orthonormal polynomials for da(x) and {y,} is the sequence
of leading coefficients.

THEOREM 5.1.  Assume x(s) is finite for all s > 0.
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(a) For any entire function f such that o(f, 1/2) < 1/x(3/2). we have

lim sup [(1 = 1) /1" < ((3/2) o (/2 1/2))"

x

By contrast, given entire f(z)=>3_ -:Ob,]z‘/ with by, 2 0.j=0, 1. 2..... and
I|f] < oo, we have

lim sup [(1 = )|/ > (& (2) o(f: 1/2))*

(b) For any entire function f, let
En— l[f, = min{“j‘*PHAm).; :Pe'jjr—l}‘ n= l* 2’
Then

1 < ]irnminf {”f* Ln[f]“d(n),q /En llf”lw

llm Sup Hf Lnlf”l_\(ﬂ) //En« Ilfl 1”<2X /,U (2

Proof. (a) The positive assertion follows from Theorem 4.1(a), as
(=2, u=1,4=1 By contrast, if f(z)=37 ,b,;z* is entire with b,,> 0.
Jj=0,1,2... and [ f] < oo, Lemma 3.8(a) gives

([‘In)lle/n bl ing, - bl (’n)A(n

2n In 2n

A /A(n)

"

by (2.8). The result follows from (2.19) and (2.23).

(b) Let P1 IE n-1 Satley ”f Pn l”A(n) . :En l[fl AS iS WC”
known, P, , exists and is unique. Then using L,|P, ,| =P, ,. we have

n llf] \waLnlf]HA(n),’r
<Hf7 Pn—IHA (ny.r +HLn|f“ Pn—rI]HAln).r
< n llf! /n 1 2A(” )” lnl(l)rrz}'

by Lemma 3.8(c) applied to g=/f— P, ,. Now it follows from a result of
Erd6s and Freud |5, Lemma 2.1, p. 523] that

n

2 limsup {y, 4" '(n)t'"
< lim sup §{ Hd(n)/A(n — D)I/IIEG, IV /A — 1y v
<x(Dfu_(2)

by (2.8), (2.13) and (2.19). The result follows. Q.E.D.

640739:4.5
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Remarks. (a) The counterexample in Theorem 5.1(a) is more general
than that in Theorem 4.1(a’}) in that it applies to a larger (and more elegant)
class of functions, but the coefficient of o(f; 1/2) is smaller—u (2) instead
of v=u, (2)

(b) We next show y(s)=1all s>1 and 4 _(p)>0 all p>0 for a
class of weights studied by Freud |7]. Freud's weights include the weights
a’(x) =exp(—ix{"), x € (—o0, ©), s > 0.

LemMMA 5.2, Let a'(x)=exp(=2Q(|x])) all x € li-. where

(1) Q(x) is positive, monotone increasing and continuously differen-
tiable in (0. o), and

(it} for some O < n < 1, x"Q'(x) is strictly increasing in (0. c0).
Let q, be the root of the equation
q.Q'(q,)=x all x20. (5.1
Then
(a) We may take
A(x)=cq, (5.2)

as our “bounding function” in (2.10) and (2.11), where ¢ is a positive
constant.

(b) x(s)=1and y(s)<s"" "M all s> 1.
(¢) u{p)zu_(p)>0alp>0andv>0.
(d) Let f(z) be entire and

A=limsuplog| flx../OR) < co. (5.3
R st

Then with ¢ as in (5.2), and if A > 0,
o(fis)<cexp((l —n) ") w(ds) all s> 0. (5.4)
When A = 0. we may replace w(A4s) by lim w(r)in (5.4). In particular if

v+

w(l/2)=1lim sup q./q:c < 1 (5.5)

then o(f,1/2)->0as 4 - 0.
Progf. (a) Theorem 1 in Freud |7, p. 49| shows

dqg, < maxi|x,, : 1 <k<ni<eq,. n=1,2..
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where d,c are constants. Further, g, is strictly increasing in x and
lim, . g,= oo, se we may take A(x)=cq,.
(b) Inequality (29) in Freud |7, p. 54| shows

q,/q, < (y/) el y2x>0

(our # is his p). Hence it follows from (2.12) and (2.13). respectively, that
w(s)<s”9 " and y(s)=1lall s> |

(c) Using inequality (30) in Freud |7, p. 54] and the first line of the
proof of Theorem 1 in |7, p. 54|, we see that for large n.

X1<q, 1 <quip=a'(x) 2> o' (1) exp(=2(1 =) (2n = 1)) > 5"~

where § > 0 is independent of n. Thus for all large enough n,

meas{x: a’(x) > 0"} /A(n) > meas{x:|x| < q,}/4(n)
>2/c

by (5.2). Thus (3.7) in Lemma 3.7 holds and so ¢, (p) >« (p)> 0 for all
p > 0. Further, by Lemma 3.8(b), v=¢,(2) > 0.

(d) Erdos and Freud |5, inequality (4.1), p. 530] show that
0(x) < Q) + xQ'(x)/(1 — 1) all x>0. (5.6)
Let f(z)= o b; 2’ satisfy (5.3). Then for R >

1l <explid < ek QR Rlip; é(R) =0,

Then by (5.2), (5.6) and Cauchy’s estimates for the {b,}.

6,1 A(sn) < cexp|(4 + £(R)) Q(R)/n] q,, /R
<cexp|(d + e(R)NQO) + RQ'(R)/(1 —m)i/nl g, /R (5.7)
Assume A > 0. If we choose R = q,,,, (which minimizes the right member of
(5.7) if ¢(R)=0) and if we use (5.1), then we obtain
O'(‘f’ S) < ¢ llr;]ffup l(A + E(QnM)){O + A ) l/(l - 7])} l Q.\'n/qn,r’.rl
Leexp((L—n) ) w(ds).
When 4 =0, on chooses R =g, ,,,, where K(n)—0 as n— co. Finally,

when w(1/2) < 1, Lemma 3.2(c) shows lim, ,,, w(r)=0 and so o(/} 1/2)— 0
as A - 0. Q.E.D.
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Remarks. (a) In [1]|, Aljarrah investigated geometric convergence of
Gauss—Jacobi quadrature for Freud's weights subject to the additional
restriction (5.5) and based on the size of 4 in (5.3). Lemma 5.3(d) shows
that Aljarrah’s results are contained in Theorem 5.1(a). Further, by using
a(f. 1/2) rather than 4 given by (5.3), one does not need to impose (5.5) in
studying geometric convergence.

{(b) The above Lemma remains valid when for some positive constants
K,. K, and some Q(x) satisfying the conditions of Lemma 5.2, we have

K, <o (x)/exp(-2Q(x) <K, forallx€ |

—see Lemma 7 in Freud [6. p. 101].

Lemma 5.3, Let > —1, ¢ > 0. Define weights aj(x). j= 1, 2. by
ai(x)=I1xi"exp(—|x[%) all xe il {5.8)
and

ay(x)=x"exp(—x") all x€ (0, )
| (5.9)
0 otherwise.

Suppose «’(x) exists in ¢ except possibly at 0. Suppose for some positive
constants ¢,.c, and j=1 or 2, we have

craji(x) < a'(x) <o ai(x) all xye . (5.10)
Then for the weight «’(x).
(a) We may take
A(x)=cx'* (5.11)

as our “bounding function™ in (2.10) and (2.11), where ¢ is a positive
constant.

(b) x{s)=1and y(s)=s""all s > 0.
(¢} u_(pyzu (p)>0alp>0andr>0.
Proof. (a) First assume a'(x) = a}(x) all x € i, Freud |6, Theorem B.
p. 103] notes that

coan < max{|x,,t L <kl <eayn' n=12,..

where ¢,,, ¢,, are independent of n. Thus in this case we may take
A(x) = ¢y x "



CONVERGENCE ON UNBOUNDED INTERVALS 359

Next suppose a'(x)=aj(x) all x € R. This case is reduced to that for
aj(x) using a standard trick. The orthonormal polynomials {¢,} for «'(x)
satisfy

-

0 ¢n(x) ¢m(x) x" exp(—x”) dx = 5mn

where J,,, is the Kronecker delta. The substitution x =y* and evenness of
the following integrand yields

Jﬁ 0,(¥") 0 (YY" exp(—| y*)dy =4,

Thus if {P,} is the sequence of orthonormal polynomials for the weight
al(y) =]y exp(—|y|¥), then P, (x)=¢,x"), n=0, 1, 2..... Since d} is
of the form (5.8), we have as before

¢4:(21)/29) < max||x]: Py, (x) = 0} < cg(2m) 2"

= C;’]nl/eg max{‘x"k‘; 1<k< H}C&n““

as the zeroes x,, of ¢,(x) are the squares of zeroes of P,,(x). Thus in this
case too, we may choose 4(x) as in (5.11).

Finally, when a’(x) satisfies only (5.10), Lemma 7 in Freud |6, p. 101]
shows that we may still choose 4(x) as in (5.11).

(b) follows from (2.12), (2.13) and (5.11).

(c) We are given (5.10). Then there exists x,>0 such that
a’'(x) 2 exp(—2x®) all x > x,. [f 0 < < I,

meas{x: a’(x) > 0"}/4(n) > meas {x > x,: exp(—2x%) > 6"}/d4(n)
— {[n|1og 81/2]""* = x,1/(en")
- ||log 61/2]"¢/c as n— .

Thus (3.7) holds and 4 _(p) > 0 all p > 0. By Lemma 3.8(b). v =u (2) > 0.
Q.E.D.

Remarks. (a) For a large class of weights including the Hermite and
Laguerre weights, Lemma 5.3 shows that ¢ (p)>0, v>0 and so the
positive and negative assertions of Theorems 4.1, 4.2, 4.3 and 5.1 are
applicable to these weights.

(b) Erdos [4] and Freud |5, Remark, p.531| considered weights-
a'(x) =exp(—2Q(x)), where Q(x) grows faster than any finite power of x.
From the Remark in [5, p. 531] we see u_(2) > 1/4 for these weights.



360 D. S. LUBINSKY

ACKNOWLEDGMENTS

I would like to thank Professor Oved Shisha for providing me with a copy of [1] and an

anonymous referee for helping to improve the presentation of the paper.

Lot

REFERENCES

. R. ALJARRAH, Error estimates for Gauss—Jacobi quadrature formulae with weights having

the whole real line as their support. J. Approx. Theory 30 (1980), 309-314.

G. A. BAKER, Jr.. “Essentials of Pade Approximants,” Academic Press. New York, 1975.

P. J. Davis, “Interpolation and Approximation.” Ginn. Waltham, Mass.. 1963.

. P. ErRDGs, On the distribution of the roots of orthogonal polynomials. in “Proceedings.
Conference on the Constructive Theory of Functions™ (G. B. Alexits and S. B. Steckin.
Eds.), pp. 145-150, Akademiai Kiado, Budapest. 1972.

. P. ERDOs anD G. FReUD. On orthogonal polynomials with regularly distributed zeros.

Proc. London Math. Soc. 29 (1974), 521-537.

. G. FrREuD, On estimations of the greatest zeros of orthogonal polynomials, Acta Math.

Acad. Sci. Hungar. 25 (1974), 99-107.

. G. FrReuD. On the greatest zero of an orthogonal polynomial. 1l. Acta Sci. Math. 36

(1974), 49-54.

. G. Freup, “Orthogonal Polynomials,” Pergamon. Budapest. 1971. |Translated by 1.

Féldes|

. E. HiLLE, *Analytic Function Theory,” Vol. 1I, Ginn, Waltham. Mass.. 1962.
. J. L. WaLsH, “Interpolation and Approximation.” American Mathematical Society Collo-

quium Publications, Vol. 20. 2nd ed.. Providence. R.I., 1956.
. H. ENGELS, **Numerical Quadrature and Cubature, Academic Press. London. 1980.



