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We investigate geometric convergence for rules of numerical integration and the
associated Lagrangian interpolation polynomials over unbounded contours and
intervals. The results obtained are shown to be substantially best possible.

I. MOTIVATION

Little is known about convergence rates of Lagrangian interpolation and
numerical integration over unbounded intervals. Here elementary methods
are used to investigate geometric convergence of not necessarily real rules of
numerical integration and the associated Lagrangian interpolation
polynomials. We show our results are substantially best possible. Further. in
showing that our results contain some recent results of Aljarrah II I, we
remove a restriction in his class of weights.

2. NOTATION

(i) Throughout, (a, b) will be a fixed unbounded real interval
(-CX) ~ a < b ~ CX)) and /l: (a, b) --+ C (the complex plane) will be continuous.
Further, a: (a, b) --+ C will be a fixed function of bounded variation such that
the moment function

."
rn(t) = J 1/l(x)I' dial (x) (2.1 )

exists and is finite for all t;:? 0, as a Lebesgue-Stieltjes integral. Here
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d Ia I (x) denotes the total variation of da(x). To exclude "trivial" cases, we
shall assume supp [d I a II is infinite. Define also the moments

,b

mj = I f3(x'Y da(x),
"a

j=O, 1,2,.... (2.2)

Whenever the Lebesgue-Stieltjes integral is defined and finite, define

.b

II/(z) 1 =11/1 = I 1(f3(x))da(x)
"(J

(2.3 )

The most important case of the above is where f3(x) = x. and a(x) is real
and monotone increasing, with supp [da 1 unbounded. However, the above
also includes complex integrals over unbounded contours.

(ii) Whenever p > 0 and the Lebesgue-Stieltjes integral is defined and
finite, define

_ \ ." P /1 1
'

Ilgll".p-/.I
a

lg(f3(x))1 dlal(x)\ .

Also. whenever r > 0 and the sup is finite, set

II gll,.f = sUP11 g(z)l: Izi ~ r[.

(iii) Jill will be approximated by

11

JII[/I = \ ' AIIJ(Xllk ),
k I

II = 1,2,. .. (2.4 )

where the abscissas XIII'" XliII are n distinct complex numbers and the
weights Alii'" AIIII are complex numbers. Let

and

11 I
A(v) - m \ \' i 1 I· I/'./ .
.,- aX/;;-lilLllkl' ~n"",x\

/I = lim sup/l(n)I!II.
n .• u:.

all real X ;? I (2.5 )

(2.6)

Of course A = 1 for rules with positive real weights, but A = 2 for
Newton-Cotes rules on [-1,1]. See [11, p. 2741. Let

040/39/4 4

11

¢II(Z) = 11 (z - XII;)'
i ~- I

n = 1,2,... (2.7)
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YII 1 = II¢nll",c'

¢II(Z) = yJn(Z),

n = 1.2, .

n = L 2 ..

(2.8)

(2.9)

In the special case where fJ(x) = x, and a(x) is real and monotone
increasing, with suppldal unbounded. and where the ~xlI;f are the Gauss-­
Jacobi abscissas for du, then 1¢nl is the sequence of orthonormal
polynomials for du. and ~ In f is the sequence of leading coefficients.

(iv) We assume that we are given a function L1(n) bounding /Il's
abscissa of largest modulus. More precisely. assume

L1: II, 00 ) ---+ (0. 00) is monotone increasing I

and lim L1(x) = CfJ \
r -, f

and

(2.10)

maxllxllkl: I ~k~lIi~L1(II).

For all s > O. let

11 = L 2..... (2.11 )

lj/(S) = lim sup L1(xs)/L1(x)
r .-{

x(S) = lim sup L1(x + s)/L1(x).
\'.-.-/

(2.12)

(2.13 )

We shall usually assume that x(s) is finite for all s? 1. This allows L1(x) to

grow smoothly like x" or e"\ some 'I > O.

(v) We shall assume /n is exact for some powers of z. that is.

k = O. 1.2..... K(n). n = 1.2..... (2.14 )

Regarding 1K(n) [, we assume throughout that \K(n) i is positive. monotone
increasing and limn ., K(n) = 00. We shall often assume that for some fixed
real ( > . 1I ? 0,

and/or

K(n)? (11 - U

K(n)~(n+u

all large enough n

all large enough 11.

(2.15A)

(2.158)

Let e(v) be the "lower inverse" of K(n). that is.

e(x) = minjn: K(n)? xl all real x ? K( I ) (2.16)

so that e(x) is monotone increasing, integer valued and

K(e(X)- I)<x~K(e(x)) all X? K(I). (2.17)
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Hence we have also

341

(2.15A) => B(x) < (x + u)/( + 1

(2.15B) => B(x) > (x - u)/(

all large enough x (2.18A)

all large enough x. (2.18B)

For general interpolatory quadrature rules, K(n) = n - 1; B(x) = least
integer~x+ 1; (=u= 1. Further, for Gauss-Jacobi rules K(n)==2n- L
B(x) = least integer ~ (x + 1)/2; (= 2: u = 1. Note, however, that we did not
require ( to be an integer in (2.15A, B).

(vi) Given real p > 0, we shall write throughout p* = maxj I,p/(f.
without further mention. Here ( is the number in (2.15A, B). Define

11+ (p) = lim sup Ilinll:!.'~/L1(p*n)
" ·~CfJ

11 (p) = lim inf II in II ::.'~/L1 (p *n)
Il-.... cf-:

v = lim sup 1(1 -In) [zK(n)+ 1 ]1 1!(K(n)+ I) / L1 (n).
n·-.Q'

(2.19)

(2.20)

The quantities 11 + (p), 11- (p) and v depend only on the rules jIn} and are
important in discussing geometric convergence.

(vii) The Lagrangian interpolation polynomial of order n (n= 1,2,... )
to a function f(z) defined at x ni , i = I, 2,.... n is

n

Lnlf](z) = '" f(x nk ) l"k(z)
k 1

where

n

lnk(z)= 111(z-xnJ/(xnk -x"Ji,
icc 1

iick

k = 1,2,... , n.

..~ will denote the class of polynomials of degree at most n with complex
coefficients.

(viii) For any entire functionf(z) = 2...:f:-o bizi , its order is

p(f)=limsup(nlogn)/(Ioglbn l I)
n ----J.OC

and if °<p(f) < 00, its type is

r(f) = lim sup n IbnIP(/)!n/(ep(f)).
n---->oc

(2.21 )

(2.22 )
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Finally, we introduce the Lf-index off, denoted a(f; s), by

a(f; s) = lim sup Ibnl tin Lf(sn)
n -4CF.-

all s > O. (2.23 )

For suitable values of s, a(f; s) determines whether or not Inlfl converges
geometrically to IIf I; and whether or not L nl f I converges geometrically to f
in some sense.

3. LEMMAS

In this section, we establish some preliminary results. The following
lemma compares p. rand a.

LEMMA 3.1. Letf(z)=L! obizi be entire.

(a) Suppose for some q2 > O. C2> O.

all large enough x. (3.1 )

Then

(i) p(f) < I/q2 ~ a(f; s) = 0 all s > O.

(ii) p(f) = l/q2 => a(f; s) <(c 2ser(f)/q2)'1, all s > O.

(b) Suppose for some ql > O. C 1 > O.

all large enough x.

Then

(i) p(f) > I/ql cc> a(f; s) = 00 all s > O.

(ii) p(f) = I/ql => a(f; s):;::, (c i ser(f)/ql )'/1 all s > O.

Proof (a)(i) It follows from (2.21) that for some q> q2 and for large
II. Ibnl < 11 'HI. so (3.1) gives

as n·->oo.

(ii) Writing p=p(f)= l/q2' we have

and (2.22). (2.23) give the result by taking lim sup's.

(b) is similar. Q.E.D.

One can introduce a "lower Lf-index" a (f; s) by replacing the lim sup in
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(2.23) by lim inf. This is useful in some counterexamples, but we omit the
details.

LEMMA 3.2. Let III(S) and x(s) be given by (2.12) and (2.13). respec­
tively.

(a) lj/(rs) < lII(r) III(S); x(r + s) <x(r)x(s) all r, s > O.

(b) If for some r> 1, lII(r) < 00, then III(S) is finite for all s> O.
Further, given r. > 0, and if

q2 = (log(lII(r) + r.))/Iog r (3.2)

then for all large enough x,

where c2 is a positive constant.

(c) If for some r < 1, lII(r) < 1, then Iim\~o+ III(S) = O. Further. given
small r. > 0, and if

ql = (log(III-I(r) - r.))/Iog r

then for all large enough x.

where c I is a positive constant.

Proof (a) follows directly from (2.12) and (2.13). Note that we have
to interpret 0 . 00 = 00 if lII(r) = 0, lII(s) = 00.

(b) From (a), III(,J) <(lII(r)Y all j= 1,2'00' so III(S) is finite for all
s > O. Next, for some positive integer I, we have

,1 (rx)/L1 (x) < lII(r) + c (3.3 )

Then given x,) r', we have for some integer j,) O.

rl +;-1 <x < rl +; => 1+ j - 1 <log x/log r < 1+ j

so that by (3.3),

L1(x) <L1(r l +;) <,1 (r)(III(r) + r.);

<,1 (r)(III(r) + c)(\ogx/lOgrJ+I-1

= (C 2X)Q2

where q2 is given by (3.2) and C2 is a constant independent of x.

(c) is similar to (b). Q.E.D.
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LEMMA 3.3. (a) I/nlz/ II,;;;; A (n) Lhn ),}, n = 0, 1,2,....

(b) l1[z/II,;;;;.1(e(j))L1/(e(j)),}=0,1,2, ....

(c) When fJ(x), a(x) are real valued functions and da(x)? 0 in (a, b).
then

m(t) ,;;;; 2.1 (e(t + 2)) L1 1(e(t + 2)) all t? O.

Proof (a) follows from (2.5) and (2.11).

(b) From (2.14), (2.17) we have K(e(j))?} and hence
1[z/1 =/o0)lz/l· Now apply (a).

(c) Given t? 0, let} be the least even integer ?I. Let K be an
arbitrary positive number. Then if /' = IX: IfJ(x)1 ,;;;; K~ .

•IJ

m(t) = I IfJ(x)l t da(x)
~' a

,;;;; Kt I da(x) + I IfJ(x)II(lfJ(x)I/Ky-1 da(x)
. / . (a,1J1\ /

./ K 1 K t -/
"'" m o + mi'

as fJ(x) is real and} is even. Choose K = ,1 ({}(t + 2)) and use the bound in
(b) together with monotonicity of A(x), L1(x), e(x) and} < t + 2, Q.E.D.

LEMMA 3.4. Let}?n? 1 and P(z)=z/ -Lnlz/I(z). Lei 0 < 15 < I and
h(r5) = 215/(1 - 15).

(a) L1/(n)';;;; IIPIILl(n).x';;;; hn
+ '(r5)(L1(n)/r5Y/(2r5).

(b) When} = n, P(z) = in(z).

(c) When fJ(x), a(x) are real valued functions and da(x)? 0 in (a, b),
then for p ? I,

IIPllll,P';;;; hn+ 1(15) A l/
p (e(jp + 2))(L1(l)/r5Y(2/r5)

where 1= maxjn, e(jp + 2) f.

Proof (a) The left part of the inequality follows from the well-known
fact that for any monic polynomial Q(z) of degree }.
max{1 Q(z)l: Izl';;;; rf? ri-see, for example, Hille 19. p.2671. The upper
bound follows by using

.. ]' tj i,Jz)
P(z)=z' -Lnlz'l(z)= (2nW .Ie (t-z) in(t) dl

all Iz I,;;;; J(n), where C = {t: Itl = J(n )/r5/-see Davis 13, Theorem 3.6. L
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p. 68 j. Since the zeroes of in lie in Iz I~ L1 (n), estimating the contour integral
in the usual way yields the right part of the inequality.

(b) Both P(z) = zn - L n[zn 1(z) and in(z) have leading coefficient L
degree n, and the n zeroes x nk ' k = 1,2,... , n, in common, so must be iden­
tical.

(c) Let r> 0 andY = jx E (a, b): 1.B(x)1 ~ rf. Then for x E ,j,

IP(,8(x))I~ IIPII,.cx;, and for x E (a, b)\Y, IP(,8(x))1 ~ IIPII,.! 1.B(x)/rli by the
Walsh-Bernstein inequality [10, p. 77]. Thus

II PII~.p ~ r IIPII~.oo da(x) +J IIPII~."o 1.B(x)lrl
ip

da(x)
"./ (a.b)\/

~ IIPII~.cn (mo+m(jp)/,JP).

Taking r=L1(n) and using Lemma 3.3(c), we see

mo+m(jp)/,JP ~A(B(O)) + 2A(B(jp + 2))L1iP(B(jp + 2))IL1il'(n)

~ 3A(B(jp + 2))(L1(l)IL1(n)}iP

by definition of l. If we now use the upper bound on II P II.1(I1).co in (a) above,
and take pth roots, the result follows. Q.E.D.

Lemmas 3.4(a), (b) remain true when some of the abscissas X'II coalesce.
Lemma 3.4(c) remains true with a suitably modified definition of A(n).

LEMMA 3.5. Let fez) = L~o bizi be entire. Assume A given by (2.6) is
finite and X(s) given by (2.13) is finite for s > O. Set hex) = 2xl{l - x) all
o< x < 1. Assume that (2.15A) holds.

(a) Let co=x(ul(+ I)A 1
/(. Ifa(f; 1/0 < l/co then

lim sup 1(1 - I n )[f11 1
/

11
~ (coa(f; l/o)( < 1.

n oc

(b) If a(f; 1) < 1/3, then

(c) Assume .B(x), a(x) are real valued functions and da(x)? 0 in
(a, b). Let P? 1 and C I =X((u + 2)/( + I)A 1

/(. Ifa(f;p*) < 1/(3c l ) then

lim sup Ilf- Lnlflll;:.'~ ~ h(c i a(f;p*)) < 1.
n~cn
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Proof (a) Using (2.14), we have (at first formally)

'j

(I - Ill) II I= \ . bP ~ Ill) IZl I·
i K(n) -<- I

(3.4 )

Now j > K(n) ~ B(j) > n by (2. 17). Further, (2.18A) holds. These remarks
together with Lemmas 3.3(a), (b) and monotonicity of A (x), J (x) give, for
all j > K(n),

1(I-/II)lzJII ~ 2A((j + u)/( + I) L.Ji((j + u)/( + I).

Then

lim sup 1max Ibp-JII)lzJIII/Jr
n -+Cf) .i,>,f(n)

~Iimsup 1max A1/J«(j+u)/(+ 1)IJ((j+u)/(+ 1)/J(j/OI
n---.'f i>K(n)

X lib;I'/J J(j/Olr

~Ali(X(U/(+ I)a(j; 1/0 = clla(f; I/O

by (2.6), (2.13) and (2.23). Then given small [, > 0, (2.15A) and (3.4) give,
for large enough n,

r

I(I~/II)I/II~ \' ((1 +c;)clla(f; I/O)'
j (n u+ 1

where K is a constant independent of n. The result follows.

(b) We have

(f~ L III I I)(z) = \ ' bJ(zi ~ L III zJ I(z»).
i "

(3.5 )

Choose c >°such that d = a(f; I) + I: and 6 = a(j; 1) + 21: are less than I.
Then by Lemma 3.4(a), for large n,

/

III- L II I/IIIL1(II),cc ~ h ll
+ '(6)(26) I ~ Ib;1 (J(n)/6Y

i n

f

~ h ll '(6)(26) , \. (d/6Y
j II

by (2.23) and monotonicity of J (x). The result follows as 6 and d < 6 can be
chosen arbitrarily close to a(f; 1).
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(c) Choose e so small that d = c1a(f;p*) + e and fJ = c, a(f;p*) + 2c
are smaller than I. Then using the upper bound in (2.18A), as well as
Lemma 3.4(c), and (3.5), we obtain (at first formally)

,:::F~"

Ilf-L"lflll".p<2h"+1(fJ)fJ~'~ A'/P((jp+2+u)/(+ 1)lb;1
j n

X (L1(jp* + (2 + u)/( + 1)/fJ}i

x

< h"+ '(fJ) K \' (d/fJ)j

for large n by choice of c 1 and d, and where K is a constant independent of
n. The result follows. Q.E.D.

LEMMA 3.6. Let f(z) = LieD 0 bjzj be entire with bi real, ) = 0, I, 2, ....
Let n be a given positive integer and X"j') = 1,2,... , n, be real.

(a) If - L,,[fJI (x) <1/"(x)I2..~,, (n Ibil (maxllxl, L1(n)f )j~", for all
real x.

(b) If b2j ?-0, b2i+,=0, )=0,1,2,... , then If-L211lfll(x)?­
b211 I/2,/x)1 for all real x. .

(c) If b2j =0, b2j +1 ?-0, )=0,1,2,..., then If-LzII+,lfll(x)?­
b211+11/211+,(x)lfor all real x.

(d) If x llj ?- 0, ) = 1,2,... , nand b;?- 0, ) = 0, 1,2,... , then
If - Llllfll(x)?- b" 1/,,(x)1 for all x?- 0.

Proof By the well-known error formula for Lagrange interpolation
(Davis 13, Theorem 3.1.1, p. 56]) for all real x,

(f- Llllfj)(x) = f(II)(ry) /(x)/n!

(3.6)

Here ry depends on x and is contained in the smallest interval containing x llk '
k = 1,2,... , n, and x.

(a) follows from (3.6) and Iryl <maxlL1(n), Ixl f·
(b) Using (3.6) and the restrictions on jbif,

"'. . 2'
If - L 2"lfll (x) = l/zII(x)1 j~~l (2~) b2; ryZj~211

?- l/zII(x)1 b2,,·

(c), (d) are similar to (b). Q.E.D.
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LEMMA 3.7. Assume that P(x) = x and that a(x) is real and absolutely
continuous in (a, b). Assume that da(x);;' 0 in (a, b). Further, assume there
exists c5 E (0, I) satisfying

lim infmeasjx E (a, b): af(x);;' c5" f/Ll(n) > 0
n --->if)

(3.7)

where meas denotes linear Lebesgue measure. Then.u (p) given by (2.19) is
positive for all p > O.

Proof Let p > O. Let/ (n) = jx E (a, b): af(x);;, 02/JI'1 all n = l, 2, ....
For large n, there is an integer between p*n and 2p*n, so monotonicity of
Ll(x) and (3.7) yield

meas( /' (n)) ;;, cLJ (p *n ) all large enough n (3.8 )

where c > 0 is independent of n Choose 0 < c; < c/(4e) and let
:/'(n) = lx: lif,(x)! ~ (d(p*n))"l, n = L 2,.... By Cartan's Lemma (Baker
[2, p. 1741)

meas(::/"(n)) ~ 4ec;Ll(p*n),

Then by absolute continuity of a(x).

•/1

Ilill~.p = I lill(x)I/) af(x) dx
'(1

n=I.2..... (3.9)

;;, I (c;Ll (p* n))"P c5 21' II dx
" /(11)\.'(11)

;;, Ll"P(p*n)(cl'o21' )"((c - 4ec) Ll(p*n))

by (3.8), (3.9). The result follows as c - 4ec; > O. Q.E.D.

LEMMA 3.8. Assume that P(x) = x and that a(x) is real and da(x);;, 0 in
(a, b), with supp[da I unbounded. Assume that the P,"d and lxllif are, respec­
tively, the Gauss-Jacobi weights and abscissas for da(x).

(a) Letf(z)=Ltob2jz2j be entire with b2j ;;,0.j=0.1,2,.... Then

Ilfl < 00 = "\' b2 /m 2j < 00
; 0

and if either of these holds,

(3.10)

(I - III)lfl;;, b211 YII 2 alln ;;, I. (3.11 )

(b) If v is given by (2.20), (hen v =.u I (2).
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(c) If g(z) is defined at xl/i' j = 1,2,..., n, then

349

(3.12 )

Proof (a) Since the partial sums of f increase monotonically to f in
(-00, (0), (3.10) follows from Lebesgue's monotone convergence theorem.
To show (3.11), note first that (/ - 11/)1 x 2i ] ): °all j = 0, 1, 2, ... by Shahat's
Lemma (Freud [8, Lemma III. 1.5, p. 92 J) and hence

; n

Next, let H(x) be the (Hermite) interpolation polynomial of degree at most
2n - I that interpolates to the value and first derivative of x 2 /1 at x = x/li'
j = 1, 2,... , n. Then the polynomials Z2/1 - H(z) and (¢/I(z) f have leading
coefficient one, and 2n zeroes in common, so must be identical. Thus by
exactness of the quadrature rule and by (2.8),

(/ - 1/I)lx 2/11 = l[x 2/11_ 1/liHI
= I[x 2 /1] - IIHI

(3.13 )

(b) As K(n) = 2n - 1 for Gauss-Jacobi rules, (2.20) yields

V= lim sup 1(/ -1/1)lx 2 /111 1
/
12 /1)/.1(n)

n---l'T

= lim sup II ¢/I11:::;/.1(n) = 11, (2)
fl--+Cf.

by (3.13), (2.8) and as 2* = max{ 1, 2/(f = I for Gauss-Jacobi rules, since
(= 2 in (2.15A).

(c) By Eq. III.(6.3) in Freud 18, p. 1141,

k = 1,2,.... n.

(His notation is a little different from that here.) Then if 1/1 acts on the
variable y, we see from (2.9) that
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Using Holder's inequality and Inl¢~_ I(Y) I = 11¢~_,1 = 1, we obtain

and (3.12) follows. Q.E.D.

When (a, b) c (0, oc;) an obvious analogue of Lemma 3.8(a) holds for
entire f(z) = LC( 0 bizi with b ): 0, j = 0, I, 2, ....

4. GENERAL THEOREMS

Following is our main result.

THEOREM 4.1. Assume A given by (2.6) is finite and that X(s) given by
(2.13) is finite for all s > 0. Write h(x) = 2xl(l- x) for all 0< x < I.
Assume (2.15A) holds.

(a) Let Co = X(uj( + 1) A l/ i . For any entire function f such that

a(f; 1/() < llco , we have

lim sup 1(1- In)lfll'!" ~ (coa(j; I/m i .
fl--->'X

(b) For any entire function f such that a(f; I) < 1/3, we have

limsupilf-Lnlflll~j/~,.J~h(a(f; 1)).
n---> x

(4. I)

(4.2 )

(c) Assume P(x), a(x) are real valued functions and da(x): ° in
(a, b). Let p): 1 and c, = X«u + 2)/( + I)A 1/(. For any entire function f
such that a(f;p*) < 1/(3c,), we have

lim sup Ilf - L"lf 111:/';, ~ h(c 1a(f; p* )).
n-->rx..:

(4.3 )

In addition, let (2.158) hold. We then have the following negative assertions
to complement the above:

(a') There exists an entire function f(z) with a(j; I/O an arbitrary
number in (0, l/co) and

lim sup [(l- In)lf 11'/n ? (va(f; I/WX«u + I )/())\ (4.4)
n~(J:)

where v is given by (2.20).
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(b ') There exists an entire function f(z) with a(f; 1) an arbitrary
number in (0,1/3) and

(4.5)

(c') Let p ~ 1. There exists an entire function f(z) with a(j; p *) an
arbitrary number in (0, I/(3c j )) and

(4.6 )

Proof The positive assertions (4.1), (4.2), (4.3) follow immediately from
Lemma 3.5. We need prove only the counterexamples by choosing suitable
entire functions f(z) = )'7" ab;zJ.

(a ' ) Assume v> 0, otherwise the counterexample is trivial. Let
a E (0, I/ca). By (2.20), we can choose positive integers nU) with the
following property. Let k(i) = K(n(i» + 1. i = 1,2,.... Then, for i = 1,2,....

11 = n(i),

k(i + 1) > U + 1) k(i)

k=k(i)=>I(I-I,,)lzkll~ l(v-lji)L1(nW·

(4.7)

(4.8)

Let rr = (k(i): i = 1, 2,... ~. Set bk = a if kErr and

if kElT. (4.9)

Thenf(z) = Lr~a b;zJ is entire and clearly a(f; I/O = a. Further, if n = nUl.
k = k(i), (3.4), (4.8) and (4.9) give

I(I - 1,,) [f II = IJE ~.~ ;;. k bp - 1,,) Izi I

~ la(v - lji)L1(n)/L1(k/(W - \. [b;ll(I -I,,)[zJII. (4.10)
;E r.J >k

Now if k = k(i), n = n(i), then k ,:;:; (n + u + 1 by (2.15B), so

lim sup L1(k/WL1(n)':;:; lim sup L1(n + (u + 1)j()/L1(n) = X((u + 1)/0. (4./1)
i ~ U) n -+0:)

Choose small e > O. Proceeding as in the proof of Lemma 3.5(a), and using
(4.7), (2.1 5A), we see that for large i, n = n(i), k = k(i),

~ Ib;II(I-I,,)[zJJI~K((1 +e)caa(f; Ij(»ii"
JE".J>k

(4.12)

where K is a constant independent of n, i. Then (4.4) follows from (4.10),
(4.11), (4.12) by letting i -> 00 and n = n(i), k = k(i).
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(b /) Here one uses (3.5) and Ilzl~L"lz"lllj(I'.j ),1"(n) (by
Lemma 3.4(a» and chooses the jb;f much as in (a).

(c') From (3.5), it follows that

Ilf- Llllflll".fJ) Iblllllz" - L"lz"III".f!- \' Ib;111 zi - L,,[zi [1..//
i n I I

provided the norms and series are finite. Further, by Lemma 3.4(b),

Ibill II Z" - L Il [ Z" 11[".f! = 111 b" III lJ(p*n) II1I 91l 11:..';,/,1( P*II) I f Ii.

Using these equations, and (2.19), (2.23). one can choose the jbil much as in
(a') to deduce (4.6). Q.E.D.

Remarks. (a) Theorems 4.I(b), (c) remain valid when some abscissas
jxllif coalesce, so that Llllfl interpolates to some derivatives off When they
are interpolatory, the integration rules may also be modified to use 1's
derivatives: in studying convergence one then uses the inequality

1(1 -I,,)[f[l::;; Ilf- L,,[filln.,·
(b) Obviously the counterexamples in Theorems 4.I(a'), (c') have no

significance unless v> O. !J f (p) > 0, respectively. It is possible to construct
rules for which both these quantities are zero-in such cases it is perhaps
inappropriate to base a study of geometric convergence on the function ,1 (II).
However. in practical rules, both v and !J (p). and so !J, (p). are
positive-see Section 5.

(c) The negative assertions show that in each case, the term involving
a(f; .) substantially determines the rate of convergence. For example. (a).
(a') yield functions satisfying

where K 1 and K 2 depend only on the integration rules. not on f and where
K I is usually positive.

COROLLARY 4.2. Assume that A.X(s) are as in Theorem 4.1.

(a) Assume that for some q > 0, C2 > 0,

for all large enough n. (4.13 )

Iff is entire and p(f) < I/q, then we may replace the right members of(4.1).
(4.2) and (4.3) by O. If p(f) = I/q then we may replace a(f; s) in (4.1). (4.2)
and (4.3) by (c1ser(f)/q)q with the appropriate values of s. provided s is
small enough to satisfv the requirements of those assertions.
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(b) A ssume, in addition to (4.13), that for some c, > 0,
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for all large enough n.

Then there exist entire functions f with p(f) = I/q and satisfying the
restrictions on a(f; s) in (4.4), (4.5) and (4.6), with the appropriate values of
s. Further, for those entire functions, we may replace a(f; s) in (4.4), (4.5)
and (4.6) by (c]ser(f)/q)q with the appropriate values ofs.

Proof This follows immediately from Lemma 3.1 and Theorem 4.1.
Q.E.D.

Remarks. (a) When lfI(r) < 00, some r> I. and [; >° is given,
Lemma 3.2(b) shows we may choose q = infpog(lfI(r) + e)/log r: r> I} in
(4.13).

(b) When the abscissas {x ni } are real, there is the following alternative
result for Lagrangian interpolation.

THEOREM 4.3. Assume that fJ(x), a(x) are real valued and da(x)? °in
(a, b). Assume that Xni' i = 1,2,... , n; n = 1,2,... are all real. Assume that A
given by (2.6) is finite, and that (2.15A) holds.

(a) Let q\ ?p\ >P? 1 and PI I +q~1 =p l . Then iff is an entire
function such that a(f; qn < A 1/(, we have

(b) By contrast, if f(z) = 1.:/ 0 b2i z 2i is entire with b'i? 0,
j = 0, I. 2,... , then for P? 1 such that Ilfll".!' < 00, we have

lim sup Ilf~ Llllflll;,!,';, ?f.1-(p) a(f;p*).
n--.. u:.

Proof (a) Assume first f(z)=[..!obizi is real for real z.
Lemma 3.6(a) and Holder's and Minkowski's inequalities give (at first
formal~v)

Ilf- Llllflll".!, <; Ilinll",p, i~~' (~ ) Ibilll(maxilxl, LI(n)ly
ll

ll".1',· (4.14)

Here by Minkowski's inequality and (2.1),

II(max {I x I, LI (n) }}i- n 11".q,
<; Illxli-nll".q, + IILli-n(n)II".q,

= ml/q'((j -n) ql) + ml/q1(0)Lli n(n)

<; j2A(e[(j~n)ql +2IW/Q 'jLli- ll (el(j-n)ql +2J)+Lli- ll (n)}
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(by Lemma 3.3(c) and monotonicity of A)

all} ~ n, all n large enough. (4.15 )

Here K is a constant independent of n. and j, and we have used (2.6),
(2.18A), the monotonicity of ,1, and the definition of q;. Now let E > 0 be so
small that

Using q; ~p; and (4.14), (4.15), we obtain, for large n.

(4.16)

~K(A 1/\(,ul(P)+t;))" \' (;) di

! n 1

=K(A-1((;.it(p)+t:))"d"(I-d) " I (4.17)

The result follows from (4.16) and (4.17) by taking nth roots and letting
n --> 00. When I is non-real for real z, write I(z) =11 (z) + ij,(z), where 11 .j,
are entire and real for real z. Further. use the linearity of L" as well as
a(Jj;s)~a(f;s),j= 1,2;s~O.

(b) By Lemma 3.6(b).

and the result follows from (2.19), (2.23). Q.E.D.

Theorem 4.1(c) and Theorem 4.3(a) complement one another-neither
contains the other in general.

5. GAUSS-JACOBI RULES

Throughout this section-without further mention-we assume fJ(x) = x
and that a(x) is real and monotone increasing in (a, b) and that suppldal is
unbounded. Further, we assume that the P'nd and {Xnd are, respectively, the
Gauss-Jacobi weights and abscissas for da(x). Thus l¢"f given by (2.9) is
the sequence of orthonormal polynomials for da(x) and IY" f is the sequence
of leading coefficients.

THEOREM 5.1. Assume X(s) is finite lor all s > O.
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(a) For any entirefunctionf such that a(f; 1/2) < Ifx(3/2), we have

lim sup 1(/ - I,,)[f]II/" ~ (x(3/2) a(f; 1/2))2.
n ---+ if

By contrast, given entire fez) = Ltc() b2j Z
2j with b2j ~ O.j = O. 1.2..... and

Ilf] < 00, we have

lim sup 1(I-I,,)lfll l
/" ~ (jl (2) a(f: 1/2))2.

n--->(f;

(b) For any entire function f, let

Then

E" Ilfl = minjllf - PII~("I.f : P E ;;'.1 f.

1~ lim inf 111f- L,,[fJII~("I.f /E" I[f] f I"
/II

n = L 2.....

~ lim sup nlf - L"lflll~(,,).f /E" Ilfl r 1/" ~ 2x( 1)//1 (2).
n--.. -f.

Proof (a) The positive assertion follows from Theorem 4.1(a). as
(= 2, u = 1, /I = 1. By contrast, if fez) = Lj () b2jZ

2j is entire with b2;~ O.
j=O, 1,2,... , and I1fl < 00, Lemma3.8(a) gives

j (I -I,,)lf If 1/11 ~ b;;:'I',~ 2/" = ib;;/2111 ,1(n) f 21 II i"ll:i.';/,1(n) f 2

by (2.8). The result follows from (2.19) and (2.23).

(b) Let PII I E;;'_I satisfy Ilf-P" 111~(III.f = Ell Ilfi. As is well
known, PII I exists and is unique. Then using L "I PII II= PII I' we have

EII_Ilfl ~ Ilf - Llllf]II~(II).f

~ /11- PII-III~(III. f + IILlllf -- P" . IIII~I"I.,

~EII Ilfll1 +)'11 1(2,1(n))lIl m (I)21.

by Lemma3.8(c) applied to g=f-P" I' Now it follows from a result of
Erdos and Freud 15, Lemma 2.1, p. 5231 that

2~limsuP1Yn_ILl" I(n)fl"
n

~limsup 1ILl(n)/Ll(n- 1)1/1!li"III:/.I{'-II/Ll(n- 1)1[1" II/II
"

by (2.8), (2.13) and (2.19). The result follows.

640',94 ,i

Q.E.D.
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Remarks. (a) The counterexample in Theorem 5.1 (a) is more general
than that in Theorem 4.1 (a l

) in that it applies to a larger (and more elegant)
class of functions, but the coefficient of a(f; 1/2) is smaller---p (2) instead
of l' = ,u + (2).

(b) We next show x(s) = I all s?:- I and,u (p) > a all p> a for a
class of weights studied by Freud 171. Freud's weights include the weights
al(x) = exp(- x ), x E (-00, (0), s > O.

LEMMA 5.2. Let al(x) = exp(-2Q(!xl)) all x E . where

(i) Q(x) is positive, monotone increasing and continuously differen­
tiable in (a, (0), and

(ii) for some a< /7 < L X"QI(X) is strictly increasing in (0. OJ).

Let q, be the root of the equation

Then

(a) We may take

qxQI(q,) = x all x?:- o. (5.1 )

L1(x) = cq, (5.2)

as our "bounding function" in (2.10) and (2.11), where c is a positil'e
constant.

(b) X(s) = I and Ij/(s) <. SI;(1 "I all s?:- 1.

(c) ,ul (p)?:-,u (p) > a all p > a and l' > O.

(d) Let f(z) be entire and

A = lim sup log IlfIIRJf/Q(R) < 00.
R

Then with c as in (5.2), and if A > 0,

(5.3 )

a(f; s) <. c exp((1 -11)- I) Ij/(As) all s> O. (SA)

Whe.n A = O. we may replace Ij/(As) by lim"o, Ij/(r) in (504). In particular if

1j/(1/2) = lim sup qxlq2x < I
,(--··f

then a(f; 1/2) --> a as A --> O.

Proof (a) Theorem I in Freud 17, p. 491 shows

(5.5 )

n = I. 2, ...
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where d, c are constants. Further, qx is strictly increasing In x and
lim<.xo qx = 00, se we may take LI (x) = eqx'

(b) Inequality (29) in Freud [7, p. 541 shows

all y > x> 0

(our ry is his p). Hence it follows from (2.12) and (2.13), respectively, that
lj/(s):O;:; SI/(I-'1) and x(s) = 1 all s> 1.

(c) Using inequality (30) in Freud [7, p. 54] and the first line of the
proof of Theorem 1 in 17, p. 541, we see that for large n,

Ix!:O;:;qn-1 :O;:;qn_Ij2=>-a'(x»a'(I)exp(-2(I-ry)-1(2n-I)):;>on-1

where 0 > 0 is independent of n. Thus for all large enough n,

meas]x: a'(x) > on f/Ll(n) > meas]x: Ixl:O;:; qn?/LI(n)

>21e

by (5.2). Thus (3.7) in Lemma 3.7 holds and so fl t (p) > fl (p) > 0 for all
P > O. Further, by Lemma 3.8(b), v = fl + (2) > O.

(d) Erdos and Freud 15, inequality (4.1), p. 530] show that

Q(x):O;:;Q(0)+xQ'(x)/(I- l7) all x> O. (5.6 )

LetJ(z) = 1::j"-0 bizi satisfy (5.3). Then for R > I,

IIJIIR.cx:O;:;exPI(A +c(R))Q(R)I: lim c(R)=O.
R --.(F

Then by (5.2), (5.6) and Cauchy's estimates for the Ibn}'

Ib,,! 1/" LI (sn) :0;:; e exp I(A + c(R» Q(R )In Iq", I R

:O;:;eexpl(A +c(R))1Q(O)+RQ'(R)/(I-ry)flnlqs"IR. (5.7)

Assume A > O. If we choose R = q ,,/.1 (which minimizes the right member of
(5.7) if c(R)=O) and if we use (5.1), then we obtain

a(J; s):O;:; e lim sup [(A + c(q,,/J)jO + A 1/(1- ry)} Iqs"lq"/1
n--+'7:-

:0;:; e exp( (1 - ry) I) lj/(A s).

When A = 0, on chooses R = qn/K(n) ' where K(n) -> 0 as n -> 00. Finally,
when lj/(I/2) < 1, Lemma 3.2(c) shows limr~o+ lj/(r) = 0 and so a(J; 1/2) -> 0
as A --~ O. Q.E.D.



358 D. S. LUBINSKY

Remarks. (a) In Ill, Aljarrah investigated geometric convergence of
Gauss-J acobi quadrature for Freud's weights subject to the additional
restriction (5.5) and based on the size of A in (5.3). Lemma 5.3(d) shows
that Aljarrah's results are contained in Theorem 5.1(a). Further, by using
a(f: 1/2) rather than A given by (5.3). one does not need to impose (5.5) in
studying geometric convergence.

(b) The above Lemma remains valid when for some positive constants
K , . K, and some Q(x) satisfying the conditions of Lemma 5.2. we have

K , ~ a ' (x)/exp(-2Q(lxl)) ~ K,

-see Lemma 7 in Freud 16. p. 1011.

for all x EI

LEMMA 5.3. Let IJ > -1, r: > O. Define weights a/(x).j= I. 2. by

and

a;(x) = IXI'J exp(-Ixl ' )

a;(x) = x" exp(-x')

o

all x E

all x E (0. OCJ)

otherwise.

(5.8)

(5.9)

Suppose a ' (x) exists in I! except possibly at O. Suppose for some positive

constants C I • c, and j = I or 2. we have

Then for the weight a' (x).

(a) We may take

,,1 (x) = CX
II

all x E (5.10)

(5.11 )

as our "bounding function" in (2.10) and (2.11). where C IS a positive
constant.

(b) X(s)=land'll(s)=s' alls>O.

(c) ,11 (p)~,11 (p»Oallp>Oandl'>O.

Proof (a) First assume a'(x)=a;(x) all xE II\. Freud 16. Theorem B.
p. 1031 notes that

n = 1.2....

where C'l' C'4 are independent of n. Thus in this case we may take
,,1(x) = C24 X

l
.
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Next suppose a' (x) = a~(x) all x E IR. This case is reduced to that for
a;(x) using a standard trick. The orthonormal polynomials (¢Il f for a' (x)
satisfy

~OC

r 9n(x) 9m(x) XII exp(-x£) dx = 0mll
'0

where omn is the Kronecker delta. The substitution x = y2 and evenness of
the following integrand yields

.00

J 9n(y2) 9m(y2) I y12 11 + I exp(-I YI2£) dy = 0mll'
-00

Thus if jPII f is the sequence of orthonormal polynomials for the weight
a~Cv) = I y12 11 + 1 exp(_lyI2e

), then P2n(X) = 9n(x2), n = O. 1.2..... Since a; is
of the form (5.8), we have as before

as the zeroes x nk of 9n(x) are the squares of zeroes of P2n (x). Thus in this
case too, we may choose L1 (x) as in (5.11).

Finally, when a'(x) satisfies only (5.10), Lemma 7 in Freud 16, p. lOll
shows that we may still choose L1 (x) as in (5.11).

(b) follows from (2.12), (2.13) and (5.11).

(c) We are given (5.10). Then there exists X o > 0 such that
a'(x) ~ exp(-2x') all x> xO ' If 0 < 0 < I,

meas{x: a'(x) ~ 011 f/L1(n) ~ meas lx > xo: exp(-2xC
) ~ 011 f/L1(n)

= 1[nllogol/21 1/'-xo f/(cn 1/£)

---+[llogol/21 1
/

c/c as n---+CX).

Thus (3.7) holds and,u_ (p) > 0 all p > O. By Lemma 3.8(b). v = ,il (2) > O.
Q.E.D.

Remarks. (a) For a large class of weights including the Hermite and
Laguerre weights, Lemma 5.3 shows that ,u-(p) > O. v> 0 and so the
positive and negative assertions of Theorems 4.1. 4.2, 4.3 and 5.1 are
applicable to these weights.

(b) Erdos 141 and Freud 15, Remark, p. 53 I I considered weights­
a'(x) = exp(-2Q(x)), where Q(x) grows faster than any finite power of x.
From the Remark in 15, p. 531 1 we see ,u _(2) ~ 1/4 for these weights.
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